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Alcohol consumption as a socially 
contagious phenomenon 
in the Framingham Heart Study 
social network
Maarten W. J. van den Ende 1,2*, Han L. J. van der Maas 1, Sacha Epskamp 1,3 & Mike H. Lees 2

We use longitudinal social network data from the Framingham Heart Study to examine the extent to 
which alcohol consumption is influenced by the network structure. We assess the spread of alcohol use 
in a three-state SIS-type model, classifying individuals as abstainers, moderate drinkers, and heavy 
drinkers. We find that the use of three-states improves on the more canonical two-state classification, 
as the data show that all three states are highly stable and have different social dynamics. We 
show that when modelling the spread of alcohol use, it is important to model the topology of social 
interactions by incorporating the network structure. The population is not homogeneously mixed, 
and clustering is high with abstainers and heavy drinkers. We find that both abstainers and heavy 
drinkers have a strong influence on their social environment; for every heavy drinker and abstainer 
connection, the probability of a moderate drinker adopting their drinking behaviour increases by 40% 
and 18% , respectively. We also find that abstinent connections have a significant positive effect on 
heavy drinkers quitting drinking. Using simulations, we find that while both are effective, increasing 
the influence of abstainers appears to be the more effective intervention compared to reducing the 
influence of heavy drinkers.

Alcohol dependence is the result of a complex interaction between many factors: social factors, from general 
life satisfaction to availability of the substance; psychological factors, such as choice processes and craving; and 
genetic vulnerabilities. Although extensive research has focused on the impact of the social environment on 
alcohol dependence1,2, the underlying interactions are still recognized as complex and multifaceted3,4. Initial 
use is affected by parental influence and exposure to peers who use drugs5. Peer pressure can facilitate abusive 
behaviour6, while social norms and stigma may make it difficult to seek help3. On the other hand, social sup-
port can also be crucial in recovery from alcohol abuse: community support is a key element in many recovery 
programs7. While there are many psychological theories and formal models of alcohol use, the impact of the 
social environment is often ignored8. At the same time, social approaches often forgo the exact structure of the 
social environment as the exact process of contagion of alcohol use is not well understood. However, in recent 
studies, the significance of network structure in contagion processes has increasingly been acknowledged. This 
has become particularly apparent during the COVID-19 pandemic, where there is a growing demand for mod-
elling efforts that incorporate network structure9,10. Similarly, in the context of alcohol use, the importance of 
accounting for population heterogeneity has been demonstrated8,11,12. Here, we leverage longitudinal social 
network data from the Framingham Heart Study to explore the influence of the structure of the social environ-
ment on alcohol consumption patterns.

The influence of social connections on behaviours such as alcohol consumption, eating habits, depression, 
sleep patterns and smoking has been compared to the spread of infectious diseases13–15. The concept of ‘social 
contagion’ captures this phenomenon and suggests that mathematical models commonly used in epidemiology 
may be well suited to unravelling the dynamics of the spread of such behaviours. While numerous studies have 
studied the social transmission of different behaviours16,17, the application of epidemiological frameworks to 
noncommunicable diseases is still in its infancy. Methodological innovations have emerged that incorporate 
factors such as group interactions, context-dependent relationships and multiplex networks18–20. Social con-
tagious models have primarily examined obesity, smoking, and information dissemination21–23, often relying 
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on theoretical network structures rather than empirical data. By analysing network data from the Framingham 
Heart Study24,25, Hill and colleagues stand out in this area. Our current study follows their approach by using an 
epidemiological model to investigate how alcohol use spreads through social networks.

Furthermore, the binary classification of individuals as drinkers or non-drinkers may not accurately reflect 
the spectrum of alcohol use observed, as a large proportion of the population consumes alcohol in a relatively 
controlled and unproblematic manner. To address this, a three-tiered classification system - abstainers, moder-
ate drinkers and heavy drinkers - has been proposed26. The current study aims to assess the implications of this 
nuanced categorisation and its effectiveness in providing a more intricate understanding of drinking patterns. We 
also assess the consistency of the observed data with the assumptions of our epidemiological model and identify 
significant parameters that inform us about the mechanisms behind the transmission of drinking behaviour. 
Finally, we aim to dissect the complexity of the spread of alcohol consumption by analysing the role of different 
drinking categories. Understanding the extent of social influence exerted by each category and their respective 
vulnerabilities is crucial. In addition, simulation experiments designed to test potential public health interven-
tions will allow us to assess the effectiveness of different strategies aimed at mitigating the spread of alcohol use.

Background
Infectious disease modelling
Infectious disease models have been used extensively to model and predict epidemics in large populations. 
These models describe the dynamics of well-mixed subpopulations (e.g. susceptible, infected, recovered) as sets 
of ordinary differential equations. For some populations, the assumption of homogeneous mixing holds, and 
these models, although simple, accurately represent the dynamics of real-world spread27,28 and do not require 
social structure or more complex spread dynamics. These models compartmentalise individuals based solely on 
their physiological state: they are either ‘susceptible’ (S) to the disease or ‘infected’ (I) once they have contracted 
the disease. If immunity is acquired, they switch to the ‘recovered’ (R) state (SIR model). Or, if they can become 
infected again after recovery, they return to the ‘susceptible’ population (SIS model).

In these models, there are two main parameters that describe the behaviour of the disease: the rate at which 
infected individuals can spread the disease to susceptible individuals, and a constant rate of recovery. The repro-
duction number R0 , defined as the infection rate divided by the recovery rate, can already give a good indication 
of the infectiousness and the future course of the disease29. The simplicity of these models allows them to be 
solved analytically, which helps us to better understand their dynamics. As such, they can help policy makers 
make accurate predictions and explore scenarios of disease spread, such as the recent Covid19 outbreak10,30.

Social contagion of alcohol use
Although alcohol consumption has been shown to behave like a ‘socially contagious’ behaviour14,15, it differs from 
infectious diseases and other behaviours in a number of ways that affect the precise modelling approach. First, 
one should apply an SIS-type model rather than an SIR-type model, as it is impossible to become immune when 
dealing with behaviour. Secondly, it has been shown that there is a large, stable, common moderate drinking state 
in which 98% of years of recreational use are followed by another year of moderate drinking26. This moderate 
drinking consists of an average weekly consumption of one to seven drinks for women and one to fourteen drinks 
for men31. When trying to understand longitudinal patterns, it may therefore be important to distinguish moder-
ate or recreational drinking from heavy drinking, which is associated with mental and biophysical health risks. 
We show that it is important to distinguish between abstainers, moderate drinkers and heavy drinkers, not only 
in terms of biophysiological consequences, but also to capture the dynamics of their spread across a population. 
Finally, while infectious diseases can generally only be transmitted through physical contact with an infected 
person, behaviour can also be adopted through a variety of other factors. Examples include cultural changes such 
as changes in normality32,33, differences in availability, advertising that promotes or discourages alcohol use, and 
the effects of policy interventions. This non-social or ‘spontaneous’ or ‘automatic’ transition must therefore be 
taken into account. This applies not only to increases in drinking, but also to reductions and cessation.

However, within the field of epidemiology, there is growing evidence that the properties of real-world social 
topology resulting from the heterogeneous connectivity patterns have an irrefutable impact on the behaviour of 
epidemic spread9,28,34, and the inclusion of explicit representations of these structures has been advocated since 
early 200035. While some diseases can spread simply by individuals being in the same environment, behaviours 
that spread socially do so slowly, mostly through individuals with whom one has social ties and spends a lot 
of time. As there is great heterogeneity in these social ties36, describing the social environment of individuals 
becomes even more important for representing the interpersonal spread of behaviour.

A basic implementation of social structure in SIR-type models is to increase the number of compartments, for 
example by grouping into different age or risk groups, or by compartmentalising spatially35. Similar approaches 
have been applied to noncommunicable diseases8,28. For example, in the modelling of university binge drinking 
by30, where individuals from each starting year are separated into different spatial compartments. Homogeneous 
mixing still occurs within individuals from these years, but mixing, and hence contagion, between individuals 
from different years is reduced. However, a more accurate representation of social structure is provided by social 
networks34, where each individual (node) has connections (edges) to other individuals with whom they have a 
social relationship37–41. Constraining the model to a social network thus implies that an infected individual can 
only spread their behaviour to others with whom they are socially connected.

Epidemiological models on networks
Modelling infectious processes in a social network has significant implications, as disease transmission no longer 
depends solely on epidemiological parameters, but also on the properties of the network. The added complexity 
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of the network structure makes it implausible to solve the dynamics analytically without making simplifications 
to the network structure or relying on approximations such as the mean-field pairwise approximation25,28. How-
ever, these simplifications may only be reliable if social spread is significantly lower than the rate of spontaneous 
transitions. Therefore, simulation studies are the most reliable and preferred method to explore social dynamics.

Network connectivity plays a critical role in disease transmission; a highly connected network facilitates rapid 
spread, while a sparsely connected network can significantly slow disease transmission42. The degree of clustering 
is also relevant; if the network consists of poorly connected clusters, it may take a longer time for the disease to 
spread from one cluster to another, resulting in slower disease progression than in a well-mixed population. In 
some cases, a disease with R0 > 1 , which would typically lead to an epidemic in an unstructured model, could 
become extinct in a network with a small number of initially infected individuals that are not well connected. 
However, if it enters a cluster, it can spread rapidly within it.

Heterogeneity in the connectivity of individuals can also lead to super-spreaders; well-connected people 
who become infected can significantly increase the spread36,42,43. Also influential is the measure of how well the 
network is mixed; in assortative mixed networks, individuals of a certain type are more likely to be connected to 
similar individuals44. The likelihood that individuals with similar characteristics or behaviours are more likely 
to be connected to each other than to those who are dissimilar is called spatial correlation24,25,45. For example, 
spatial correlation is high when heavy drinkers are more likely to be connected to other heavy drinkers than 
would be expected if the network were randomly mixed. As a result, spatial correlation can affect the spread 
of behaviours or traits within a network, as individuals may be influenced by their social connections to adopt 
similar behaviours or traits.

Methods
AMHa model on a network
We model the drinking behaviour of individuals as a three-state process, where individuals can be classified as 
‘abstaining’ (A), ‘moderate’ (M), or ‘heavy’ (H) drinkers26. In addition to regular transitions between states, we 
also account for superinfections where ‘abstaining’ individuals transition immediately to ‘heavy’ drinkers, and 
vice versa. Each transition can occur as a result of spontaneous changes or social influence, thus each transition 
has four rates: α represents the spontaneous transition rate, while βA , βM and βH represent the social transition 
rate induced by abstainers, moderate drinkers and heavy drinkers respectively.

When applied to a non-structured population, this model results in the following system of equations:

Each of these transitions then occurs depending on an ‘automatic’, or ‘spontaneous’ rate α , and, the size of all 
populations and their corresponding ‘social’ transition rates β:

Other transitions follow a similar pattern.
Note that the epidemiological approach to social contagion does not consider the reinforcing effects of indi-

viduals in the same drinking state; it only accounts for the increased likelihood resulting from associations with 
different drinking behaviours. Although this can be seen as a limitation of the model, including these reinforcing 
effects would not only increase the complexity of the model, but also exacerbate the limitations imposed by the 
data set. This is because the social reinforcing effects are disproportionately affected by the sparseness of the social 
connections in our data, especially in the ‘Friends’ category. This is exacerbated by the high degree of clustering.

Using an approach similar to24,25, we can rephrase the Markovian description above as a time-continuous 
reaction-diffusion process28,46. In this interpretation, transitions of each individual belonging to a certain state 
occur according to a set of interaction rules, described by stochiometric equations. In continuous-time, each 
transition occurs as a consequence of a set of reaction rates, or, over a small time interval �t , a set of transition 
probabilities. This approach is valid if �t is substantially smaller than the average time to transmission. These 
probabilities depend on the local network structure of each individual. For example, the transition probabilities 
for an abstaining individual over a �t time period are:

A+M +H = N

∂A

∂t
= −(A → M)− (A → H)+ (M → A)+ (H → A)

∂M

∂t
= −(M → A)− (M → H)+ (A → M)+ (H → M)

∂H

∂t
= −(H → A)− (H → M)+ (A → H)+ (M → H)

A → M = A(αAM + βM

AMM + βH

AMH)

M → H = M(αMH + βA

MHA+ βH

MHH)

H → A = H(αHA + βM

HAM + βA

HAA)

P(A → M;�t) = (αAM + βM

AMNM + βH

AMNH )�t

P(A → H;�t) = (αAH + βM

AHNM + βH

AHNH )�t

P(A → A;�t) = 1− P(A → M,�t)− P(A → H ,�t)

P(A → A,�t) = 1− (αAM + βM

AMNM + βH

AMNH )�t − (αAH + βM

AHNM + βH

AHNH )�t
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Analogous mathematical expressions can be derived for probabilities of other state transitions. Note that this 
model does not incorporate birth and mortality dynamics, as the significance of individual-level network con-
nections in these structured models greatly outweighs the effects of population turnover on spreading dynamics.

Source data
To validate and calibrate our assumptions and model, we use data from the Framingham Heart Study47,48, a lon-
gitudinal study of subjects from the town of Framingham, Massachusetts. We used data from both the Original 
Cohort and the Offspring Cohort during the period 1971 to 2001. The original cohort was examined approxi-
mately every 2 years. The Offspring Cohort was examined approximately every 4 years. Both physical and mental 
health were assessed, as well as behavioural data such as sleep patterns, cigarette smoking and alcohol consump-
tion in the form of self-reported total drinks per week. In addition, a social network was constructed by13, based 
on direct reporting of social relationships by the subjects and other data such as family and address records. This 
social network includes family members, spouses, friends, co-workers, residential neighbours, and more. In this 
study we exclude co-workers and neighbours as they have been shown not to influence the alcohol consumption 
of their connections15. In addition, although the type of connection is identified, we simplify the social network 
by assuming that all connections are bidirectional and that a connection actually exists.

We confirm that all methods were carried out in accordance with relevant guidelines and regulations, as 
outlined in the ‘Data Use Certification Agreement’, which can be found on the NCBI dbGaP webpages listed in 
section 5. Informed consent was obtained from all subjects or their legal guardian(s), and we were granted access 
to all consent groups. All experimental protocols were approved by the Ethical Committee of the Psychology 
Department at the University of Amsterdam.

Data processing
In order to fit the AMHa model to the Framingham Heart Study data, a number of data processing steps were 
required. First, we extracted the self-reported number of drinks for both the original and offspring cohorts for 
each wave by combining the data for the questions: ‘How many beers/wine/cocktails did you drink per week in 
the past year’. We then matched the original cohort data to the closest dates of the offspring cohort, resulting in 
regular intervals between examinations of approximately �t = 3± 1 year . We then restricted the social network 
to individuals with known drinking data and an age above 21, removing edges between contacts that were shown 
by15 not to be actual social contacts or to actually influence drinking behaviour within this dataset, such as co-
workers and geographically close ‘neighbours’.

Additionally, we operate under the assumption that self-reported friendships are reciprocal. This is supported 
by previous research indicating that within the FHS data, the social influence of perceived friendships falls within 
a similar margin of error15. Given their status as ancillary rather than primary factors in the FHS data, and an 
average of 0.7 friends per individual, we postulate that underreporting is a more important limiting aspect than 
directionality. This assumption does not affect the qualitative results of the study. To classify alcohol consumption 
in different states, we combined information on gender with the number of drinks per week. Then, by comparing 
the drinking state of each individual in wave Y with wave Y + 1 , drinking state transitions were identified. Finally, 
by integrating this information with the number of connections each individual had in each state, we were able 
to run the weighted linear regressions that produced the AMHa model parameters.

Table 1 provides descriptive statistics for the data used. Note that, apart from the first wave, the average age 
is 50 to 60 and remains relatively constant over the 20-year period as older individuals from the original cohort 
die and individuals from the subsequent cohort become older. The data shows a decline in the total number of 
participants and the average number of contacts with known drinking data over time, as participants pass away 
without new ones joining. A significant decrease in the prevalence of heavy drinking was observed after the first 
wave. At the same time, there was an increase in the number of abstainers, ostensibly reflecting a societal shift 
towards a lower overall prevalence of drinking.

In addition, we analysed the degree distribution (see Supplementary materials Fig. S3 online) and found that 
it did not vary significantly with different drinking behaviour. Our results show a linearly decreasing degree 

Table 1.   Descriptive data of each FHS examination. Values of age, drinks per day and numbers of contacts 
are the averages. Only individuals with known drinking behaviour are included. Total contacts contains only 
individuals whose drinking behaviour is known.

Wave Midpoint year Age Egos total Drinks per day Contacts total Contacts who abstain (%)
Contacts drinking 
heavy (%)

1 1972 47.51 7219 1.07 3.48 0.68 (20) 0.78 (22)

2 1981 53.22 5256 1.00 3.10 0.97 (31) 0.66 (21)

3 1985 54.99 4653 0.90 2.91 1.02 (35) 0.54 (19)

4 1989 57.34 4514 0.76 2.88 1.09 (38) 0.43 (15)

5 1993 59.52 4002 0.72 2.76 1.04 (38) 0.39 (14)

6 1997 58.61 2815 0.72 2.20 0.89 (40) 0.32 (15)

7 2000 61.32 2904 0.77 2.18 0.78 (36) 0.35 (16)

Mean 54.80 4480 0.88 2.92 0.91 (32) 0.54 (18)
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distribution when considering only those individuals for whom drinking data is available, whereas considering 
all connections shows an increased variance in degree and a more heavy-tailed distribution.

Model assumptions validation
When applying our epidemiological model to a network, assumptions are made that need to be validated with 
our dataset. These are: (1) whether our data are of sufficient quality to serve as a calibration for the model, (2) 
whether the three-state model proposed by26 is an improved representation of real-world dynamics based on the 
data, and (3) whether our data confirm that the conventional cut-off used to distinguish moderate from heavy 
drinking based on its biophysiological effects is also applicable to behavioural dynamics.

Stability of drinking states
To confirm that the data captures the transitions of each state, it is necessary to show that individuals change 
drinking states on a timescale of several years, since the time-continuous reaction-diffusion process description, 
where transitions are described in terms of probabilities, requires that the �t of observations be significantly 
less than the mean transition time.

In addition, with examinations every 2–4 years, if drinking states were to change annually or monthly, we 
would be missing information about the dynamics in our data: drinking states in a previous examination would 
not be predictive of the next, and our observation would not be representative of the individual’s state during that 
time. We therefore test for correlation between states for all waves and obtain a strong and positive correlation 
between each individual’s drinking state, with a correlation coefficient r ranging from 0.52 to 0.70 per wave, with 
an average of 0.63. This suggests that current drinking status is a strong predictor of future drinking behaviour 
and therefore fluctuates not on a timescale of months but on a timescale of several years. It also suggests that all 
drinking states can be considered stable.

Three‑state system
In this section we examine whether the use of a three-state system, as proposed by26, is supported by our data 
and is able to capture intricacies that might be missed by a two-state system.

To confirm the latter point, in addition to the correlation results mentioned above, we apply a methodology 
similar to26, where we measure the probability of an individual remaining in the same state over the years and 
examine the transition rates. The results can be seen in table 2. It shows that the probability of an individual 
remaining in the same state over several examinations is 75% , 67% and 61% for the abstainer, moderate drinker 
and heavy drinker states respectively. Assuming that the number of individuals who switch between two meas-
urements is negligible, as indicated by the high correlation found, this would indicate a yearly stability of 93.8% , 
91.8% and 90.3% respectively. Table 2 also shows that there is a small but significant population that transitions 
directly from heavy drinking to abstinence, a common occurrence when individuals with a drinking problem 
decide to quit their habit. Next, it shows that moderate drinking acts as a gateway: there are hardly any transi-
tions from abstinence directly to heavy drinking.

We also look at clustering and spatial correlations. The spatial correlation CXY is the ratio of the observed 
number of connections between individuals in state X to state Y compared to the expected number of connections 
if all states were equal28. If X = Y  , we call this clustering. These measures show whether, for example, abstainers 
are on average more connected to other abstainers than to heavy drinkers. This clustering could be driven by the 
spread of behaviour, but could also be attributed to homophily or confounding factors.

Table 3 illustrates the spatial correlations and clustering averaged over all examinations and shows that 
abstainers and heavy drinkers tend to cluster strongly, being about 1.5 times more likely to be associated with 
similarly drinking individuals than would be expected. Moderate drinkers tend to have a less strong preference 
to associate according to drinking behaviour.

This result is a clear indication that within alcohol consumption we cannot assume that the network is 
well mixed, as the data show that it is assortative. It is therefore beneficial to consider modelling the spread by 
constraining the model to a network. In addition, it is an indication that each of these three states behaves dif-
ferently, suggesting that applying a three-state model rather than a two-state model provides a more accurate 
representation of the real world spread.

The cutoff between moderate and heavy drinking, set by the National Institute on Alcohol Abuse and Alcohol-
ism (NIAAA) at 7 drinks per week for women and 14 drinks per week for men31, is based on the biophysiological 
consequences of alcohol consumption and its impact on an individual’s health and well-being. We assess the 
effect of different cutoffs on the stability of moderate and heavy drinking in Fig. 1. This figure shows the changes 
in stability observed across all states when different cutoffs for moderate to heavy drinking are applied. Notably, 
our findings highlight a close match between the biophysiological threshold and the most stable cutoff, as the 

Table 2.   Transmission proportions between different alcohol-use states. Each row sums to one, as it includes 
all transitions from each state..

From \ to Abstain Moderate Heavy

Abstain 0.75 0.24 0.01

Moderate 0.22 0.67 0.10

Heavy 0.07 0.33 0.61
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data show that transitioning between states is most challenging near the biophysiological definition of the cutoff. 
This suggests that the identified cutoff is not only appropriate from a biophysiological perspective, but is also 
consistent with the behavioural dynamics observed in the Framingham Heart Study, providing further support 
that moderate drinking is a distinct state and a relevant addition to modelling efforts.

Model calibration
To test if and which transitions are socially induced, which are spontaneous and which are a combination of the 
two, we fit the parameters in the reaction process description of section “AMHa model on a network” for each 
state. This is done by finding the correlation of all possible transitions with the number of connections an indi-
vidual has in state Y. A significant positive correlation then indicates that this transition is a socially contagious 
process. Our methodology, similar to that used in24,25, involves running a regression analysis on the transition 
rate from state X to state Y as function of the number of connections in state Y. Since each individual’s transition 
is binary, logistic regression is most appropriate. We have performed a comparative analysis (see Supplementary 
materials Fig. S4 online) which reveals that our logistic regression results are in the linear range, and statistical 
results closely match. As the number of connections increases, some divergence is observed. However, since 
the degree distribution is predominantly low, the instances where this divergence is significant are minimal. 
For example, out of 11,000 observations in the moderate to heavy transition with heavy connections, only 100 
instances exhibit this discrepancy. Given that we never encounter rates that exceeds one or fall below zero—
because both the slope and the maximum number of connections are low, we conclude that linear regression 
can serve as a close approximation to logistic regression, and that the epidemiological and social contagion 
methodology can be applied.

Table 3.   Spatial correlations Ci,j and clustering Ci,i of connections, averaged over all examinations. While 
the total number of connections is similar: 2.86 for abstainers, 2.74 for moderate drinkers and 2.76 for heavy 
drinkers, abstainers and heavy drinkers are about 37% and 54% more likely to be connected to individuals 
with similar drinking behaviour, while being around 32% less likely to be connected to individuals with 
opposite drinking behaviours. Similar qualitative results are obtained for different waves. A chi-squared test of 
independence was performed, showing that they are dependent, e.g., χ2(2,N = 2109) = 100.3, p < 0.001 for 
heavy drinkers at wave 7. Results for abstainers too were found to be dependent, while moderate drinking was 
found to be independent.

Connected to Abstain Moderate Heavy

Abstain 1.37

Moderate 0.85 1.07

Heavy 0.68 1.00 1.54

Figure 1.   Stability analysis of drinking states across different moderate-to-heavy drinking cutoff values. Shown 
are the year-over-year stability probabilities for remaining within the same drinking category, across a range of 
cutoff values used to distinguish moderate from heavy drinking states. The y-axis quantifies the annual stability 
likelihood, while the x-axis denotes varying threshold levels for the number of drinks defining the moderate-
to-heavy transition for women; these thresholds are doubled when applied to men. The vertical dashed line 
represents the NIAAA consumption cutoff of 7/14 drinks per week for women and men respectively31. It can be 
seen that the overall stability of the heavy and moderate states combined is notably close to its maximum value, 
supporting the validity of the biophysiological cutoff in the behavioural dynamics of the FHS data.
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We implement a weighted least squares linear regression, similar to the one applied by25. We define the 
spontaneous transition parameter αXY as the rate at which individuals move from state X to state Y, irrespective 
of the number of connections in state Y; this is represented by the intercept of the correlation with the number 
of connections. The social transition parameter βY

XY
 , on the other hand, signifies the increase in the transition 

rate for each additional connection in state Y, represented by the slope of the regression line. The transition 
from state X to state Y can also be influenced by connections in state Z, at a rate given by βZ

XY
 . Especially when 

examining the correlation of the transition from abstinent to moderate drinking with the connections of heavy 
drinkers, as well as the correlation of the transition from heavy to moderate drinking with the connections of 
abstainers, we expect this to be relevant. We therefore also test for these correlations and, if significant, include 
them as an additional social term in the model. Lastly, in modelling infectious processes, it is generally assumed 
that infection and recovery rates remain constant over time. However, given that our data span 30 years, it is 
possible to examine whether these parameters exhibit temporal variation. Any such variation may indicate 
significant cultural shifts, such as a change in attitudes towards abstinence, and should be taken into account in 
the calibration and simulations.

Results
Calibrated AMHa model: parameter insights and outcome analysis
We first investigate the trends of infection and recovery rates during our observation period. By comparing the 
parameter values obtained by a regression on each examination wave separately, we can observe general, long-
term trends. Our regression results on the the spontaneous transition parameter αXY and the social contagion 
parameter βXY are presented in Supplemental materials in Figs. S1 and S2 online. They show that all spontaneous 
rates are statistically significant for each wave and remain relatively constant over time. This is not the case for the 
socially contagious rates; while there are no apparent trends over time, some rates are not significant, indicating 
that the data show that their respective transitions are not significantly socially transmitted.

As there are no upward or downward trends in the rates across all waves, we follow25 and aggregate the data 
to obtain the regression shown in Fig. 2. This figure shows for all transitions X → Y  the aggregated data of 

Figure 2.   The effect of having multiple social connections in a certain drinking state on an individual’s 
likelihood to change their drinking behaviour. Shown are the transition probabilities of an individual in state 
X to transition to state Y as a function of the number of contacts in state Y or state Z. Data aggregated over all 
waves are shown in red, with the number of contacts in state Y or Z indicated. The results of the linear weighted 
regression are shown, with the resulting rate and its statistical significance. This regression is shown in grey if no 
statistically significant slope is found.
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the transition probability as a function of the number of connections in state Y. It also shows the result of the 
weighted linear regressions, which are coloured grey when not significant. The resulting calibrated AMHa model 
is shown in diagram form in Fig. 3. For each possible transition, the spontaneous rate is found and, if statistically 
significant, the social rate is also listed.

We find that the extremes of abstinence and heavy drinking are the most influential: moderate drinking only 
influences abstainers to start drinking, while moderate drinkers are significantly influenced by both abstainers 
and heavy drinkers. Heavy drinkers are influenced only by abstainers, who have a significant positive effect on 
quitting. However, their transition to moderate drinking is not influenced by the number of moderate drinkers 
or abstainers. Furthermore, abstainers are significantly more likely to start moderate drinking if they have more 
heavy drinking contacts.

Finally, there is a strong protective effect for extremes: abstainers are more likely to remain abstainers if they 
have many abstaining relatives. A similar effect is found for heavy drinking. As the default transition is to stay 
in the same state, this is accounted for by the value of the spontaneous transition rate.

Simulations
In this section, we analyse the calibrated AMHa model to predict future prevalence rates for heavy drinking and 
abstinence. Additionally, we evaluate interventions and formulate hypotheses regarding the efficacy of poten-
tial policies. To conduct simulations, we use the network at the time of the third exam, which strikes a balance 
between decreasing network density over exams while being representative of future networks based on model 
parameter fits.

Figure 4 shows the population-level proportions of drinking states from the model and the observed statis-
tics in the FHS data. The divergence of our individual-level model fit from the population-level results can be 
attributed to several sources. For the sake of consistency in our analysis, we use the midpoint of the examination 
period as the observation date, even though the examinations took place over several years. Therefore, there may 
be differences in the estimates due to associated errors or due to parameter variation between examinations. 
However, we have shown that the regressions for the model parameters fall within a similar range (see Supple-
mentary Figs. S1 and S2 online). Thus, differences between the model fit and the study data are primarily due to 
the dynamic network: the social network of the observed data changes over time, whereas the simulations are 
run on a static network. Despite the different fitting methods and the sources of variation mentioned above, we 
can see that the general trend is reasonably consistent with the population level data. Our simulations suggest 
that the future prevalence of heavy drinking will decline and stabilise at 14% by 2025, while abstinence rates will 
increase and stabilise at around 43%.

Simulating interventions
ere, we explore the dynamics of the epidemiological model by comparing the effectiveness of increasing the social 
influence of connections in a lower drinking state with decreasing the social influence of higher drinking states. 
Examples of interventions that have this effect could be increasing the social stigma of drinking (increasing the 
social influence of abstainers49) or improving education about the negative effects of drinking (reducing peer 
pressure to drink50). Interventions that increase or decrease the number of abstainers or heavy drinkers in one’s 
social network have a similar effect on the dynamics, such as joining Alcoholics Anonymous51,52. Figure 5 shows 
the results of changing all the ‘increasing’ versus ‘decreasing’ social influence parameters. We assume that it takes 
the same amount of effort to increase or decrease these parameters through interventions. We therefore use a 

Figure 3.   Spontaneous α and social β transition rates found for the AMHa model shown in a diagram. All rates 
shown have p ≤ 0.05 . When no β is given for a transition, no significant social transmission rate is found. It also 
shows the effect of heavy drinkers on abstainers to start drinking. These transition rates are the probability that a 
person in state X will transition to state Y in the next examination period, calculated per 4 years.
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Figure 4.   This figure displays the evolution of drinking behaviour fractions over time for both the observed and 
simulated network. The points represent the fractions observed in the examination data, using the midpoint of 
the examination duration. On the other hand, the simulated fractions are based on the third observation’s data 
and network, forecasting future fractions using obtained model parameters while remaining within the wave 3 
network.

Figure 5.   This figure shows how changes in ‘positive’ and ‘negative’ social influence affect the steady state of 
heavy drinkers in a stable, endemic state 30 years later. Shown is the average of the stable state proportion of 
heavy drinkers after 30 years across 33 different studies, including a confidence interval. Note that all rates have 
been multiplicatively adjusted to maintain their relative proportions. The x-axis uses a logarithmic scale to 
ensure that a doubling or halving of the rates is equally distant from the base values.
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logarithmic scale, so that halving is the same distance from the baseline as doubling, and they can be compared. 
We can see that increasing social recovery rates has an increasing effect, while the spontaneous multiplier has a 
decreasing effect. Similarly, interventions that reduce infection rates have a decreasing effect.

Next, Fig. 6 compares the effectiveness of policies that either increase the social influence of abstainers 
M → AA and H → AA or decrease the social influence of heavy drinkers M → HH and A → MH . Again, we 
simulate the network for 30 years, at which point the network structure is stable, and compare the resulting 
proportion of heavy drinkers in the network. If we compare a doubling and a halving of the social impact of 
abstainers and heavy drinkers respectively, we see that the fractions are above 12% and below 12%. This suggests 
that although both have a significant impact, focusing on increasing the social impact of abstainers on their envi-
ronment may be more effective than reducing the impact of heavy drinkers on their environment. This tendency 
is reinforced if the policy is more effective, as a multiplication or division by three results in a 10% difference in 
the proportion of heavy drinkers.

Discussion
We analysed alcohol use and network data from the Framingham Heart Study and found evidence of social spread 
of alcohol consumption among connected individuals. Using this data, we have developed an epidemiological 
model that incorporates three distinct and stable states of alcohol consumption: abstinence, moderate drinking 
and heavy drinking. It captures the interplay between spontaneous and socially driven drinking behaviours, 
yielding transmission rates that quantify the impact of social contagion.

When examining the network structure, we find that heavy drinkers and abstainers are significantly more 
likely to be connected to others with similar drinking habits. Specifically, heavy drinkers and abstainers are 
43% and 54% more likely to be associated with similar drinking individuals. This highlights the importance of 
incorporating network modelling into studies of drinking behaviour, as epidemiological models that assume 
homogeneity in populations do not accurately capture the complexities of such behaviours. In addition, we 
found that a three-state categorisation gives rise to states that are all stable, each with distinct infection dynam-
ics, and that the biophysiological threshold of 7 or 14 drinks per week for women and men corresponds well 
with the stability of these classifications in our data. This threshold can therefore also be considered appropriate 
for behavioural dynamics.

After fitting our model, we discovered that both abstainers and heavy drinkers have a significant impact on 
the drinking habits of their social connections, and that this influence remained consistent over the 30-year 
data period. We found that each abstaining connection increased the probability of a moderate drinker to 
also abstain by 18% , while each heavy drinker increased probability to become heavy drinker by 40% . We also 
observed that abstainers had a significant positive influence on heavy drinkers to quit drinking. Conversely, 
for each heavy drinking connection of an abstainer, the probability to start drinking and become a moderate 
drinker is significantly increased. While moderate drinkers were found to have a small but significant impact on 
encouraging abstainers to start drinking, they had no significant effect on helping heavy drinkers reduce their 
alcohol consumption.

Based on our findings, we conclude that social-drinking plays a significant role in non-problematic drinking 
and that abstainers too are not immune to peer pressure. Moreover, increasing alcohol use to the level of heavy 
drinking is largely influenced by the social environment, but reducing drinking is not, as the spontaneous rate 
of reduction in drinking occurs for 7.5% of the population each year, regardless of the number of moderate 
drinking connections. Although transitioning to total abstinence occurs in only 1.8% of the heavy drinking 
population, being surrounded by abstainers increases the likelihood of achieving total abstinence by almost 
50% per connection.

Using this calibrated model, we simulate the future prevalence of abstinence, moderate drinking and heavy 
drinking. We find that heavy drinking will continue to decrease to around 13% , down from 22% in 1975, and 
abstainers increase to a value very similar to moderate use, of 43% . Further, we investigate the general epidemio-
logical dynamics of the AMHa model on the FHS social network. We find that, assuming that efficacy of policies 

Figure 6.   This figure shows how changes in social transmission rates for abstainers and heavy drinkers affect 
the proportion of heavy drinkers in a stable, endemic state 30 years later. These changes are relative, with 
increases in transmission from moderate drinkers to abstainers ( M → A ) and from heavy drinkers to abstainers 
( H → A ) of up to almost three times the magnitude. Similarly, the effect of heavy drinking is halved at 0.5 and 
reduced to a tenth at 0.1.
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are relatively similar, increasing the social impact of abstainers is more efficient than decreasing the social effect 
of heavy drinking individuals.

The FHS dataset is unique in that it combines a longitudinal social network with drinking data over a long 
period of time. In addition, all participants lived in the same city, which means that many social connections 
are individuals who are also included in the study. However, as obtaining a social network was not an aim of the 
study, many social connections were recorded indirectly. Therefore, it is not always clear whether the connections 
obtained from the unnamed data are people with whom the participant is actually in contact. This could lead to 
inaccuracies in the social network compared to reality. In addition, we apply an undirected network; however, 
there could be differences in influence depending on the directionality of the connections: parents will be more 
influential on their children than the other way around. Another limitation of the dataset is its demographic 
composition, as it consists mainly of older subjects. As a result, the behaviours and interactions we observed 
reflect this older cohort and may not be representative of the patterns exhibited by younger adults or adolescents.

In addition, this epidemiological model assumes a linear relationship between the probability of spreading and 
the number of connections; while this holds for our data with a limited degree distribution, larger data may reveal 
a more complex relationship. Furthermore, our model does not take into account the non-Markovian elements 
of alcohol consumption behaviour. Recovered former heavy drinkers have a significantly higher risk of returning 
to their previous behaviour in the long term than those who have never abused alcohol. This poses a challenge 
in measuring transition rates from abstinence to moderate or heavy drinking, as these rates may differ between 
individuals at different stages of drinking behaviour. Additionally, a significant fraction of heavy drinkers never 
attempt to recover and continue to drink heavily for years. Conversely, another group may be actively trying to 
recover with varying degrees of success, leading to different recovery rates within the heavy drinking population.

Although challenging, future work on this topic should therefore attempt to capture the complex and cata-
strophic nature of substance abuse8. Models integrating psychologically based theories of alcohol use and its 
impact on the social environment would be able to incorporate non-Markovian dynamics and differentiate 
between individuals based on their history. Such models require careful development and testing, but hold great 
potential for deepening our understanding of substance abuse.

These models would benefit greatly from incorporating even larger datasets with more measurement points, 
both in terms of time and network size. Furthermore, the robustness of the models could be improved by validat-
ing them against different datasets, both at the individual level and at the population level. Moreover, although 
the FHS data already contains some information about the types of social connections, methods that differenti-
ate between the social relevance of each connection (e.g. time spent or influence on each other) could improve 
the representation of real-world connections. In addition, simulation studies examining the impact of network 
structure and investigating super-spreaders, different network scenarios, and various spatial-correlation factors 
could provide a more comprehensive understanding of the effectiveness of adjusting social environments, for 
which the AMHa model could prove to be a suitable starting point.

Data availability
The data, comprising clinical exams and demographic details such as age and sex, are sourced from the Framing-
ham Cohort study (reference: phs000007.v33.p14). The social network information is derived from the FHS-Net 
Social Networks substudy (reference: phs000153.v9.p8). The supporting data for this study’s findings are acces-
sible via the NCBI database dbGaP. However, due to restrictions on these data, which were utilized under license 
for this investigation, they are not publicly accessible. Contact information, details on the data, and instructions 
for requesting access can be found on the following websites: Framingham Cohort: https://​www.​ncbi.​nlm.​nih.​
gov/​proje​cts/​gap/​cgi-​bin/​study.​cgi?​study_​id=​phs00​0007.​v33.​p14, FHS-Net Social Networks: https://​www.​ncbi.​
nlm.​nih.​gov/​proje​cts/​gap/​cgi-​bin/​study.​cgi?​study_​id=​phs00​0153.​v9.​p8).

Code availability
The source code used in this research is available at53. Note that it separates the data wrangling code, which 
requires access to the data, from the simulations, which only require included calibrated model parameters.
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